26 research outputs found

    XClusters: Explainability-first Clustering

    Full text link
    We study the problem of explainability-first clustering where explainability becomes a first-class citizen for clustering. Previous clustering approaches use decision trees for explanation, but only after the clustering is completed. In contrast, our approach is to perform clustering and decision tree training holistically where the decision tree's performance and size also influence the clustering results. We assume the attributes for clustering and explaining are distinct, although this is not necessary. We observe that our problem is a monotonic optimization where the objective function is a difference of monotonic functions. We then propose an efficient branch-and-bound algorithm for finding the best parameters that lead to a balance of cluster distortion and decision tree explainability. Our experiments show that our method can improve the explainability of any clustering that fits in our framework.Comment: 11 page

    MixRL: Data Mixing Augmentation for Regression using Reinforcement Learning

    Full text link
    Data augmentation is becoming essential for improving regression accuracy in critical applications including manufacturing and finance. Existing techniques for data augmentation largely focus on classification tasks and do not readily apply to regression tasks. In particular, the recent Mixup techniques for classification rely on the key assumption that linearity holds among training examples, which is reasonable if the label space is discrete, but has limitations when the label space is continuous as in regression. We show that mixing examples that either have a large data or label distance may have an increasingly-negative effect on model performance. Hence, we use the stricter assumption that linearity only holds within certain data or label distances for regression where the degree may vary by each example. We then propose MixRL, a data augmentation meta learning framework for regression that learns for each example how many nearest neighbors it should be mixed with for the best model performance using a small validation set. MixRL achieves these objectives using Monte Carlo policy gradient reinforcement learning. Our experiments conducted both on synthetic and real datasets show that MixRL significantly outperforms state-of-the-art data augmentation baselines. MixRL can also be integrated with other classification Mixup techniques for better results.Comment: 15 pages, 9 figures, 7 table

    Personalized DP-SGD using Sampling Mechanisms

    Full text link
    Personalized privacy becomes critical in deep learning for Trustworthy AI. While Differentially Private Stochastic Gradient Descent (DP-SGD) is widely used in deep learning methods supporting privacy, it provides the same level of privacy to all individuals, which may lead to overprotection and low utility. In practice, different users may require different privacy levels, and the model can be improved by using more information about the users with lower privacy requirements. There are also recent works on differential privacy of individuals when using DP-SGD, but they are mostly about individual privacy accounting and do not focus on satisfying different privacy levels. We thus extend DP-SGD to support a recent privacy notion called (Φ\Phi,Δ\Delta)-Personalized Differential Privacy ((Φ\Phi,Δ\Delta)-PDP), which extends an existing PDP concept called Φ\Phi-PDP. Our algorithm uses a multi-round personalized sampling mechanism and embeds it within the DP-SGD iterations. Experiments on real datasets show that our algorithm outperforms DP-SGD and simple combinations of DP-SGD with existing PDP mechanisms in terms of model performance and efficiency due to its embedded sampling mechanism.Comment: 10 pages, 5 figure

    Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective

    Full text link
    Data-centric AI is at the center of a fundamental shift in software engineering where machine learning becomes the new software, powered by big data and computing infrastructure. Here software engineering needs to be re-thought where data becomes a first-class citizen on par with code. One striking observation is that a significant portion of the machine learning process is spent on data preparation. Without good data, even the best machine learning algorithms cannot perform well. As a result, data-centric AI practices are now becoming mainstream. Unfortunately, many datasets in the real world are small, dirty, biased, and even poisoned. In this survey, we study the research landscape for data collection and data quality primarily for deep learning applications. Data collection is important because there is lesser need for feature engineering for recent deep learning approaches, but instead more need for large amounts of data. For data quality, we study data validation, cleaning, and integration techniques. Even if the data cannot be fully cleaned, we can still cope with imperfect data during model training using robust model training techniques. In addition, while bias and fairness have been less studied in traditional data management research, these issues become essential topics in modern machine learning applications. We thus study fairness measures and unfairness mitigation techniques that can be applied before, during, or after model training. We believe that the data management community is well poised to solve these problems

    Inspector Gadget: A Data Programming-based Labeling System for Industrial Images

    Full text link
    As machine learning for images becomes democratized in the Software 2.0 era, one of the serious bottlenecks is securing enough labeled data for training. This problem is especially critical in a manufacturing setting where smart factories rely on machine learning for product quality control by analyzing industrial images. Such images are typically large and may only need to be partially analyzed where only a small portion is problematic (e.g., identifying defects on a surface). Since manual labeling these images is expensive, weak supervision is an attractive alternative where the idea is to generate weak labels that are not perfect, but can be produced at scale. Data programming is a recent paradigm in this category where it uses human knowledge in the form of labeling functions and combines them into a generative model. Data programming has been successful in applications based on text or structured data and can also be applied to images usually if one can find a way to convert them into structured data. In this work, we expand the horizon of data programming by directly applying it to images without this conversion, which is a common scenario for industrial applications. We propose Inspector Gadget, an image labeling system that combines crowdsourcing, data augmentation, and data programming to produce weak labels at scale for image classification. We perform experiments on real industrial image datasets and show that Inspector Gadget obtains better performance than other weak-labeling techniques: Snuba, GOGGLES, and self-learning baselines using convolutional neural networks (CNNs) without pre-training.Comment: 10 pages, 11 figure
    corecore